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Abstract

We consider the optimal servicing of a queue with sigmoid server performance. The sigmoid server performance occurs in various
domains including human decision making, visual perception, human-machine communication and advertising response.The tasks
arrive at a given rate to the server. Each task has a deadline that is incorporated as a latency penalty. We investigate thetrade-off
between the reward obtained by processing the current task and the penalty incurred due to the tasks waiting in the queue.We study
this optimization problem in a Markov decision process (MDP) framework and show that the MDP formulation is equivalent to a
certainty-equivalent problem. We determine the receding horizon servicing policy for the queue and show that the optimal policy
may drop some tasks, that is, may not process a task at all. We then develop an adaptive policy that incorporates all the available
information about the current tasks and show that the adaptive policy improves the performance significantly. Finally,we present
a comparative study of the receding horizon policy for the certainty-equivalent problem and the adaptive policy. We also suggest
guidelines for the design of such queues.

Keywords: optimal control of queues, non-submodular optimization, sigmoid utility, human decision making

1. Introduction

The recent national robotic initiative [10] underlines innovative
robotics research and applications emphasizing the realization
of co-robots acting in direct support of and in a symbiotic rela-
tionship with human partners. Such co-robots will facilitate bet-
ter interaction between the human partner and the automaton.
In complex and information rich environments, one of the key
roles for these co-robots is to help the human partner efficiently
focus her attention. A particular example of such a setting is
the surveillance mission, where the human operator monitors
the evidence collected by the autonomous agents [5, 7]. The
excessive amount of information available in such systems of-
ten results in poor decisions by the human operator [23]. This
emphasizes the need for the development of a support system
that helps the human operator optimally focus her attention.

Recently, there has been significant interest in understanding
the physics of human decision making [4]. Several mathe-
matical models for human decision making have been pro-
posed [4, 15, 27]. These models suggest that the correctness
of the decision of a human operator in a binary decision mak-
ing scenario evolves as a sigmoid function of the time-duration
allocated for the decision. Thus, the probability of the correct
decision by a human operator increases slowly for small time-
duration allocations and high time-duration allocations,and in-
creases quickly for moderate time-duration allocations. The

✩This work has been supported in part by AFOSR MURI Award FA9550-
07-1-0528. A preliminary version of this work [25] entitled ”Task release con-
trol for decision making queues” was presented at American Control Confer-
ence, 2011, San Francisco, CA.

sigmoid function also models the quality of human-machine
communication [27], the human performance in multiple target
search [12], the advertising response function [26], and the ex-
pected profit in simultaneous bidding [17]. Therefore, the anal-
ysis presented in this paper can also be used to determine op-
timal human-machine communication policies, optimal search
strategies, the optimal advertisement duration allocation, and
optimal bidding strategies. In this paper, we generically refer to
the server with sigmoid performance as a human operator and
the tasks as the decision making tasks. When a human opera-
tor has to serve a queue of decision making tasksin real time,
the tasks (e.g., feeds from camera) waiting in the queue lose
value continuously. This trade-off between the correctness of
the decision and the loss in the value of the pending tasks is of
critical importance for the performance of the human operator.
In this paper, we address this trade-off, and determine the opti-
mal duration allocation policies for the human operator serving
a decision making queue.

There has been significant interest in the study of the perfor-
mance of a human operator serving a queue. In an early work,
Schmidt [21] models the human as a server and numerically
studies a queueing model to determine the performance of a
human air traffic controller. Recently, Savla et al [20] study
human supervisory control for unmanned aerial vehicle oper-
ations: they model the system by a simple queuing network
with two components in series, the first of which is a spatial
queue with vehicles as servers and the second is a conventional
queue with human operators as servers. They design joint mo-
tion coordination and operator scheduling policies that mini-
mize the expected time needed to classify a target after its ap-
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pearance. The performance of the human operator based on her
utilization history has been incorporated to design maximally
stabilizing task release policies for a human-in-the-loopqueue
in [19, 18]. Bertuccelli et al [3] study the human supervisory
control as a queue with re-look tasks. They study the policies
in which the operator can put the tasks in an orbiting queue for
a re-look later. An optimal scheduling problem in the human
supervisory control in studied in [2]. The authors determine a
sequence in which the tasks should be serviced so that the ac-
cumulated reward is maximized. Powel et al [16] model mixed
team of humans and robots as a multi-server queue and incor-
porate a human fatigue model to determine the performance of
the team. They present a comparative study of the fixed and
rolling work-shifts of the operators.

The optimal control of queueing systems [22] is a classical
problem in queueing theory. Stidham et al [13] study the op-
timal service policies for a M/G/1 queue. They formulate a
semi-Markov decision process, and describe the qualitative fea-
tures of the solution. Certain technical assumptions in [13] are
relaxed by George et al [8]. In contrast to the models discussed
here, these studies assume identical tasks and submodular per-
formance functions. Hernández-Lerma et al [11] determine op-
timal servicing policies for the identical tasks and some arrival
rate. They adapt the optimal policy as the arrival rate is learned.

In this paper, we study the problem of optimal time-duration
allocation in a queue of binary decision making tasks with a
human operator. We refer to such queues asdecision making
queues. We assume that tasks come with processing deadlines
and incorporate these deadlines as a soft constraint, namely, la-
tency penalty. We consider two particular problems. First,we
consider a static queue with latency penalty. Here, the human
operator has to serve a given number of tasks. The operator in-
curs a penalty due to the delay in processing of each task. This
penalty can be thought of as the loss in value of the task over
time. Second, we consider a dynamic queue of the decision
making tasks. The tasks arrive at a fixed rate and the operator
incurs a penalty for the delay in processing each task. In both
the problems, there is a trade-off between the reward obtained
by processing a task, and the penalty incurred due to the result-
ing delay in processing other tasks. We address this particular
trade-off.

The major contributions of this work are as follows: (i) we de-
termine the optimal duration allocation policy for the static de-
cision making queue with latency penalty; (ii) we pose an MDP
to determine the optimal allocations for the dynamic decision
making queue and show that the MDP formulation is equivalent
to a certainty-equivalent problem; (iii) we provide a simple pro-
cedure to determine a receding horizon policy for the certainty-
equivalent problem, namely, certainty-equivalent policy; (iv)
we establish performance bounds for the certainty-equivalent
policy; (v) we study an adaptive algorithm that incorporates
all the available information about the current tasks and im-
proves the performance of the certainty-equivalent policy; (vi)
we present a comparative study of the certainty-equivalentpol-
icy and the adaptive policy; (vii) we suggest some guidelines

for the design of decision making queues.

The remainder of the paper is organized as follows. We discuss
some preliminary concepts in Section 2. We present the prob-
lem setup in Section 3. The static queue with latency penaltyis
considered in Section 4. We pose the optimization problems as-
sociated with the dynamic queue with latency penalty and study
their properties in Section 5. We present and analyze reced-
ing horizon algorithms for these optimization problems in Sec-
tion 6. A real time adaptive algorithm is studied in Section 7.
Our conclusions are presented in Section 8.

2. Preliminaries

In this section, we present some concepts that are used through-
out the paper. We start with some models of human decision
making, followed by some properties of sigmoid functions. We
close the section with a discussion on receding horizon opti-
mization.

2.1. Speed-accuracy trade-off in human decision making

Consider the scenario where, based on the collected evidence,
the human has to decide on one of the two alternativesH0 and
H1. The evolution of the probability of correct decision has
been studied in cognitive psychology literature [15, 4].

Pew’s model: The probability of deciding on hypothesisH1,
given that hypothesisH1 is true, at a given timet ∈ R≥0 is
given by

P(sayH1|H1, t) =
p0

1+ e−(at−b)
,

wherep0 ∈ [0,1], a,b ∈ R are some parameters specific
to the human operator [15].

Drift di ffusion model: Conditioned on the hypothesisH1, the
evolution of the evidence for decision making is modeled
as a drift-diffusion process [4], that is, for a given a drift
rateβ ∈ R>0, and a diffusion rateσ ∈ R>0, the evidenceΛ
at timet is normally distributed with meanβt and variance
σ2t. The decision is made in favor ofH1 if the evidence is
greater than a decision thresholdη ∈ R>0. Therefore, the
conditional probability of the correct decision at timet is

P(sayH1|H1, t) =
1

√
2πσ2t

∫ +∞

η

e
−(Λ−βt)2

2σ2t dΛ.

C
or

re
ct

D
ec

is
io

n
P

ro
b.

0
0

1

Time

(a) Pew’s model

C
or

re
ct

D
ec

is
io

n
P

ro
b.

0
0

1

Time

(b) Drift diffusion model

Figure 1: The evolution of the probability of the correct decision under Pew’s
and drift diffusion model. Both curves look similar and are sigmoid.
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2.2. Sigmoid functions

A doubly differentiable functionf : R≥0→ R≥0 defined by

f (t) = fcvx(t)I(t < tinf) + fcnv(t)I(t ≥ tinf),

is called a sigmoid function, wherefcvx and fcnv are monoton-
ically increasing convex and concave functions, respectively,
I(·) is the indicator function andtinf ∈ R>0 is the inflection
point. The derivative of a sigmoid function is a unimodal func-
tion that achieves its maximum attinf . Further, f ′(0) ≥ 0 and
limt→+∞ f ′(t) = 0. Also, limt→+∞ f ′′(t) = 0. A typical graph of
the first and second derivative of a sigmoid function is shownin
Figure 2. From the derivative of the sigmoid function, it is clear
that the sigmoid functions are not submodular. Note that the
evolution of the conditional probability of the correct decision
is a sigmoid function in Pew’s as well as drift-diffusion model.

tmin tinf tmax

(a)

0

0 δ1 δ2

(b)

Figure 2: (a) First derivative of the sigmoid function and thepenalty rate. A
particular value of the derivative may be attained at two different times. The
total benefit, that is, the sigmoid reward minus the latency penalty, decreases
up to tmin, increases fromtmin to tmax, and then decreases again. (b) Second
derivative of the sigmoid function. A particular positive value of the second
derivative may be attained at two different times.

2.3. Receding horizon optimization

Consider the following infinite horizon dynamic optimization
problem:

maximize
+∞
∑

ℓ=1

ψ(x(ℓ),u(ℓ))

subject to x(ℓ + 1) = φ(x(ℓ),u(ℓ)), x(0) given,

(1)

wherex(ℓ),u(ℓ) ∈ R are the state and the control input at time
ℓ ∈ N, respectively,ψ : R × R → R is the stage cost, and
φ : R × R→ R defines the nonlinear evolution of the system.

In receding horizon optimization [6], the optimization prob-
lem (1) is approximated by the following finite horizon opti-
mization problem at each stageθ ∈ N:

maximize
θ+N−1
∑

ℓ=θ

ψ(x(ℓ),u(ℓ))

subject to x(ℓ + 1) = φ(x(ℓ),u(ℓ)), x(θ) given,

(2)

whereN ∈ N is a finite horizon length. The receding horizon
optimization is summarized in Algorithm 1.

Algorithm 1 Receding horizon optimization
1: at stageθ ∈ N, observe statex(θ)
2: Solve optimal control problem (2) and compute the optimal

control inputsu∗(θ), . . . ,u∗(θ + N − 1)
3: Apply u∗(θ), and setθ = θ + 1
4: Go to step1:

3. Problem setup

We consider the problem of optimal time duration allocationfor
a human operator. The decision making tasks arrive at a given
rate and are stacked in a queue. A human operator processes
these tasks on thefirst-come first-servebasis (see Figure 3.) The
human operator receives a unit reward for the correct decision,
while there is no penalty for a wrong decision. We assume that
the tasks can be classified according to their difficulty, and the
difficulty level takes value in an arbitrary setD ⊆ R

q, for some
q ∈ N. For a decision made after processing a task with diffi-
culty d ∈ D for time t, the expected reward is

E[1sayH1|H1,t] = P(sayH1|H1, t) = fd(t), (3)

where fd : R≥0→ ]0,1[ is the sigmoid function associated with
the task. Note that such reward structure corresponds to the
expected number of correct decisions.

We consider two particular problems. First, in Section 4, we
consider a static queue with latency penalty, that is, the sce-
nario where the human operator has to performN ∈ N decision
making tasks, but each task loses value at a constant rate per
unit delay in its processing. Second, in Sections 5, 6, 7, we
consider a dynamic queue of decision making tasks where each
task loses value at a constant rate per unit delay in its process-
ing. The loss in the value of a task may occur due to the pro-
cessing deadline on the task. In other words, the latency penalty
is a soft constraint that captures the processing deadline on the
task. For such a decision making queue, we are interested in
the optimal time-duration allocation to each task. Alternatively,
we are interested in the task release rate that will result inthe
desired accuracy for each task. We intend to design a decision
support system that tells the human operator the optimal time-
duration allocation to each task.
Remark 1 (Soft constraints versus hard constraints). The pro-
cessing deadlines on the tasks can be incorporated as hard con-
straints as well, but the resulting optimization problem iscom-
binatorially hard. For instance, if the performance of the hu-
man operator is modeled by a step function with the jump at the
inflection point and the deadlines are incorporated as hard con-
straints, then the resulting optimization problem is equivalent to
theN-dimensional knapsack problem [14]. TheN-dimensional
knapsack problem isNP-hard and admits no fully polynomial
time approximation algorithm forN ≥ 2. The standard [14] ap-
proximation algorithm for this problem has factor of optimality
N + 1 and hence, for largeN, may yield results very far from
the optimal. The close connections between the knapsack prob-
lems with step functions and sigmoid functions (see [24]) sug-
gest that efficient approximation algorithms may not exist for

3



the problem formulation where processing deadlines are mod-
eled as hard constraints. �

λ

incoming tasks outgoing tasks

queue length
n

operator

performance

Figure 3: Problem setup. The decision making tasks arrive at arateλ. These
tasks are served by a human operator with sigmoid performance. Each task
loses value while waiting in the queue.

4. Static queue with latency penalty

4.1. Problem description

Consider that the human operator has to performN ∈ N deci-
sion making tasks in a prescribed order (task labeled ”1” should
be processed first, etc.) Let the human operator allocate dura-
tion tℓ to the taskℓ ∈ {1, . . . ,N}. Let the difficulty of the taskℓ
bedℓ ∈ D. According to the importance of the task, a weight
wℓ ∈ R≥0 is assigned to the taskℓ. The operator receives an ex-
pected rewardwℓ fdℓ (tℓ) for allocating durationtℓ to the taskℓ,
while she incurs a latency penaltycℓ per unit time for the delay
in its processing. Therefore, the expected benefit for taskℓ is
wℓ fℓ(tℓ)−cℓ(t1+ . . .+ tℓ). The objective of the human operator is
to maximize her average benefit and the associated optimization
problem is:

maximize
t∈RN

≥0

1
N

N
∑

ℓ=1

(

wℓ fdℓ (tℓ) − (cℓ + · · · + cN)tℓ
)

, (4)

wheret = {t1, . . . , tN} is the duration allocation vector.

4.2. Optimal solution

We start by establishing some properties of sigmoid functions.
We study the optimization problem involving a sigmoid reward
function and a linear latency penalty. In particular, givena sig-
moid function f and a penalty ratec ∈ R>0, we wish to solve
the following problem:

maximize
t∈R≥0

f (t) − ct. (5)

The derivative of a sigmoid function is not a one-to-one map-
ping and hence, not invertible. We define the pseudo-inverseof
the derivative of a sigmoid functionf with inflection pointtinf ,
f † : R>0→ R≥0 by

f †(y) =















max{t ∈ R≥0 | f ′(t) = y}, if y ∈ ]0, f ′(tinf)],

0, otherwise.
(6)

Notice that the definition of the pseudo-inverse is consistent
with Figure 2(a).

Lemma 1 (Sigmoid function and linear penalty). For the opti-
mization problem(5), the optimal solution t∗ is

t∗ ∈ argmax{ f (β) − cβ | β ∈ {0, f †(c)}}.

Proof. The global maximum lies at the point where first deriva-
tive is zero or at the boundary of the feasible set. The first
derivative of the objective function isf ′(t) − c. If f ′(tinf) < c,
then the objective function is a decreasing function of timeand
the maximum is achieved att∗ = 0. Otherwise, a critical point
is obtained by setting first derivative to zero. We note that
f ′(t) = c has at most two roots. The second derivative con-
dition yields that if there exist two roots, then only the larger of
the two roots corresponds to a local maximum. Otherwise, the
only root corresponds to a local maximum. The global maxi-
mum is determined by comparing the local maximum with the
value of the objective function at the boundaryt = 0. This
completes the proof.

Definition 1 (Critical penalty rate). For a given sigmoid func-
tion f and penalty ratec ∈ R>0, let the solution of the prob-
lem (5) bet∗f ,c. The critical penalty rateς f is defined by

ς f = sup{c ∈ R>0 | t∗f ,c ∈ R>0}. (7)

Note that the critical penalty rate is the slope of the tangent to
the sigmoid functionf from the origin. �

The optimal solution to problem (5) for different values of
penalty ratec is shown in Figure 4. One may notice the op-
timal solution jumps down to zero at the critical penalty rate.
This jump in the optimal allocation gives rise to combinatorial
effects in the problems involving multiple sigmoid functions.
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Penalty Ratec

Figure 4: Optimal solution to the problem (5) as a function of linear penalty
ratec. The optimal solutiont∗ → +∞ as the penalty ratec→ 0+.

We can now analyze optimization problem (4).
Theorem 2 (Static queue with latency penalty). For the op-
timization problem(4), the optimal allocation to taskℓ ∈
{1, . . . ,N} is

t∗ℓ ∈ argmax
{

wℓ fdℓ (β) − (cℓ + · · · + cN)β
∣

∣

∣

β ∈ {0, f †dℓ ((cℓ + . . . + cN)/wℓ)}
}

.

Proof. The proof is similar to the proof of Lemma 1.

Remark 2 (Comparison with a concave utility). The optimal
duration allocation for the static queue with latency penalty de-
creases to a critical value with increasing penalty rate, then
jumps down to zero. In contrast, if the performance function
is concave instead of sigmoid, then the optimal duration allo-
cation decreases continuously to zero with increasing penalty
rate. �
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Example 1(Static queue and homogeneous tasks). The human
operator has to serveN = 10 tasks and receives an expected re-
ward f (t) = 1/(1 + exp(5− t)) for an allocation of durationt
secs to a task, while she incurs a penaltyc = 0.02 per sec for
each pending task. The optimal policy according to Theorem 2
is shown in Figure 5(a). The optimal policy drops some tasks
initially, then processes the remaining tasks. The duration allo-
cation increases with decreasing number of pending tasks.�

Example 2 (Static queue and heterogeneous tasks). The hu-
man operator has to serveN = 10 heterogeneous tasks and re-
ceives an expected rewardfdℓ (t) = 1/(1+exp(−aℓt+bℓ)) for an
allocation of durationt secs to taskℓ, wheredℓ is characterized
by the pair (aℓ,bℓ). The following are the parameters and the
weights associated with each task:

(a1, . . . ,aN) = (1,2,1,3,2,4,1,5,3,6),

(b1, . . . ,bN) = (5,10,3,9,8,16,6,30,6,12), and

(w1, . . . ,wN) = (2,5,7,4,9,3,5,10,13,6).

Let the vector of penalty rates be

c = (0.09,0.21,0.21,0.06,0.03,0.15,0.3,0.09,0.18,0.06)

per second. The optimal allocations are shown in Figure 5(b).
The importance and difficulty level of a task are encoded in the
associated weight and the inflection point of the associatedsig-
moid function, respectively. The optimal allocations depend on
the difficulty level, the penalty rate, and the importance of the
tasks. For instance, task 6 is a relatively simple but less impor-
tant task and is dropped. On the contrary, task 8 is a relatively
difficult but very important task and is processed. �
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Figure 5: Static queue with latency penalty. For homogeneoustasks, the opti-
mal policy drops some tasks initially and then processes the remaining tasks.
The duration allocation increases with decreasing queue length. For heteroge-
neous tasks, the optimal allocations depends of the difficulty level, the penalty
rate and the importance of the tasks.

5. Dynamic queue with latency penalty: problem descrip-
tion and properties of optimal solution

In the previous section, we developed policies for static queue
with latency penalty. We now consider dynamic queue with la-
tency penalty, that is, the scenario where the tasks arrive accord-
ing to a stochastic process and wait in a queue to get processed.
We assume the tasks lose value while waiting in the queue. The
operator’s objective is to maximize her infinite horizon reward.
In the following, we pose the problem as an MDP and show
that the infinite horizon average value formulation of the MDP
is equivalent to a deterministic dynamic optimization problem.

5.1. Problem description

Assume that the human operator has to serve a queue of deci-
sion making tasks arriving according to Poisson process with
rateλ ∈ R>0. We assume that each task is sampled from a prob-
ability distribution functionp : D → R≥0, whereD ⊆ R

q is
the set of difficulty levels of the tasks. Each task is assigned
a weight based on its importance. Two tasks that are equally
difficult may have different weights. To capture this feature,
we assume that the weight associated with a task with difficulty
leveld is a random variablewd ∈ R>0 with probability distribu-
tion functionpw

d : [wmin
d ,wmax

d ] → R≥0, wherewmin
d ,wmax

d ∈ R>0

are given constants. Similarly, let the latency penalty associated
with a task with difficulty leveld be a random variablecd ∈ R>0

with probability distribution functionpc
d : [cmin

d , cmax
d ] → R≥0,

wherecmin
d , cmax

d ∈ R>0 are given constants. Let the realized
difficulty level, importance, and latency penalty rate for taskℓ

bedℓ, wdℓ , andcdℓ , respectively. Thus, the operator receives an
expected rewardwdℓ fdℓ (tℓ) for a duration allocationtℓ to task
ℓ, while she incurs a latency penaltycdℓ per unit time for the
delay in its processing. Note that while designing a decision
making queue, the true realizations of the random variablesare
not known and only expected values are at designer’s disposal.
Therefore, we construct the value function with the expected
values over realizations of the queue. We define the expected
reward functionf̄ : R≥0 → ]0,1[ and the expected penalty rate
c̄ ∈ R>0 by

f̄ (t) =
1
w̄
Ep[Epw

d
[wd] fd(t)] and c̄ = Ep[Epc

d
[cd]] ,

respectively, where ¯w = Ep[Epw
d
[wd]] and E∗[·] represents the

expected value with respect to the measure∗. Note that these
expressions assume thatwd, d, andcd are statistically indepen-
dent.

We denote the queue length at the beginning of processing task
ℓ ∈ N by nℓ ∈ Z≥0. The objective of the operator is to maximize
her infinite horizon expected reward. For any allocationtℓ to
taskℓ, the queue length evolves according to a Poisson process
and hence, it is Markovian. We now formulate the optimization
problem as an MDP. We construct such an MDP, namelyΓ, with
the action space as the set of durations that can be allocatedand
the state space as the difficulty level of the tasks in the queue.
We define the rewardrℓ : D×Rn′

ℓ ×R ×R≥0→ R obtained by
allocating durationt to the taskℓ by

rℓ(dℓ, c,wdℓ , t) = wdℓ fdℓ (t) −
1
2

(

ℓ+nℓ−1
∑

i=ℓ

cdi +

ℓ+n′
ℓ
−1
∑

j=ℓ

cd j

)

t,

wheren′
ℓ
∈ N is the queue length just before the end of process-

ing of the taskℓ ∈ N andc ∈ Rn′
ℓ is the vector of penalty rates

for the tasks in the queue. Note that the queue length while
a task is processed may not be constant, therefore the latency
penalty is computed as the average of the latency penalty for
the tasks present at the start of processing the task and the la-
tency penalty for the tasks present at the end of processing the
task. Such averaging is consistent with expected number of ar-
rivals being a linear function of time for Poisson process.
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For a duration allocationtℓ to taskℓ ∈ N, the transition proba-
bility from queue lengthnℓ ∈ Z≥0 to queue lengthnℓ+1 ∈ Z≥0

is

P
tℓ
nℓnℓ+1

=















0, if nℓ+1 ∈ {0, . . . ,nℓ − 2},
e−λtℓ (λtℓ)(nℓ+1−nℓ+1)

(nℓ+1−nℓ+1)! , otherwise.

The MDP with finite horizon lengthN ∈ N maximizes the value
functionVN : N × RN

≥0→ R defined by

VN(n1, t) =
N
∑

ℓ=1

E[rℓ(dℓ, c,wdℓ , tℓ)|n1], (8)

where t is the vector of allocations to each task andn1 is the
initial queue length.

The infinite horizon average value function of the MDP, de-
noted byVavg : N × RN

≥0→ R, is defined by

Vavg(n1, t) = lim
N→+∞

1
N

VN(n1, t).

We study the MDPΓ under the following assumptions:
Assumption 1(Non-empty queue). Without loss of generality,
we assume that the queue is never empty. If queue is empty at
some stage, then the operator waits for the next task to arrive,
and there is no penalty for such waiting time.
Assumption 2 (Sigmoid average performance). We assume
the average of the sigmoid functions̄f is a sigmoid function.
Remark 3 (Sigmoid average performance). Assumption 2
is justified in several contexts. For empirically obtained sig-
moid functions, f̄ can be obtained by fitting a sigmoid func-
tion through averaged empirical data. In the context of decision
making tasks, the performance of the operator on each task is
modeled by a drift-diffusion process, and the average of a set
of drift-diffusion processes is again a drift-diffusion process.
Hence, the average performance is well modeled by a sigmoid
function. �

5.2. Properties of optimal solution

We now study some properties of the MDPΓ and its solution
that will be used later in the paper. Before we establish these
properties, we introduce the following optimization problem,
which we refer to as the certainty-equivalent [1] problem:

maximize lim
N→+∞

1
N

N
∑

ℓ=1

(

w̄ f̄ (tℓ) − c̄E[nℓ |n1]tℓ −
c̄λt2

ℓ

2

)

subject to E[nℓ+1|n1] = max{0,E[nℓ |n1] − 1+ λtℓ}
tℓ ≥ 0,∀ℓ ∈ N.

(9)

We also defineNmax = ⌊w̄ς f̄ /c̄⌋. We will show thatNmax is the
maximum queue length at which the optimal policy allocates
non-zero duration to the first task. We now state some proper-
ties of the MDPΓ:
Lemma 3 (Properties of MDPΓ). Under Assumption 1 and 2,
the following statements hold for the MDPΓ and its infinite
horizon average value function:

(i). the MDPΓ admits the same optimal policy as(9);
(ii). the optimal policy allocates zero duration to the first task

if n1 > Nmax;
(iii). the optimal policy allocates a duration less than̄f †(c̄/w̄)

to each task.

Proof. We start with the definition ofVavg:

Vavg(n1, t) = lim
N→+∞

1
N

N
∑

ℓ=1

E[rℓ(dℓ,nℓ,n
′
ℓ, tℓ)|n1]

= lim
N→+∞

1
N

N
∑

ℓ=1

E

[

wdℓ fdℓ (tℓ) −
1
2

(

ℓ+nℓ−1
∑

i=ℓ

ci +

ℓ+n′
ℓ
−1
∑

j=ℓ

c j

)

tℓ
∣

∣

∣

∣

n1

]

= lim
N→+∞

1
N

N
∑

ℓ=1

w̄ f̄ (tℓ) −
1
2

c̄E[nℓ + n′ℓ |n1]tℓ (10)

= lim
N→+∞

1
N

N
∑

ℓ=1

w̄ f̄ (tℓ) −
1
2

c̄(2E[(nℓ |n1] + λtℓ)tℓ

= lim
N→+∞

1
N

N
∑

ℓ=1

w̄ f̄ (tℓ) − c̄E[nℓ |n1]tℓ −
1
2

c̄λt2ℓ ,

where equation (10) follows from the Wald’s identity [9] and
the expected evolution of the queue length is determined by the
Poisson arrival and the deterministic service processes, that is,

E[nℓ+1|n1] = max{0,E[nℓ |n1] − 1+ λtℓ}, ∀ℓ ∈ {1, . . . ,N}.

Therefore, the infinite horizon average value formulation of the
MDP and the certainty-equivalent problem are identical. This
establishes the first statement.

To prove the second statement, we note that under Assump-
tion 1, E[nℓ |n1] = n1 − ℓ + 1 + λ

∑ℓ−1
j=1 t j and thus, the value

function is:

VN(n1, t) =
N
∑

ℓ=1

(

w̄ f̄ (tℓ) − c̄(n1 − ℓ + 1)tℓ − c̄λtℓ
ℓ−1
∑

j=1

t j −
c̄λt2

ℓ

2

)

.

We write VN = Vone + Vrem, whereVone : N × R → R and
Vrem : N × RN

≥0→ R are defined by

Vone(n1, t1) = w̄ f̄ (t1) − c̄n1t1,

Vrem(n1, t) =
N
∑

ℓ=2

(

w̄ f̄ (tℓ) − c̄(n1 − ℓ + 1)tℓ

− c̄λtℓ
ℓ−1
∑

j=1

t j −
c̄λt2

ℓ

2

)

−
cλt21

2
.

Note thatVrem is a decreasing function oft1 and from Lemma 1
we know that, for ¯cn1/w̄ > ς f̄ , Vone achieves its global maxi-
mum att1 = 0. Hence,VN achieves its maximum att1 = 0 for
c̄n1/w̄ > ς f̄ , that is, the optimal policy drops the first task if
n1 > w̄ς f̄ /c̄. Since,n1 is a non-negative integer,n1 > w̄ς f̄ /c̄ is
equivalent ton1 > Nmax.

To establish the last statement, we note that the functionVone is
a decreasing function oft1, for all t1 > f̄ †(c̄/w̄), andVrem is a
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decreasing function oft1, for all t1 > 0. Hence the maximum
allocation to any task is̄f †(c̄/w̄).

One of the key implications of Lemma 3 is that the solution of
the MDPΓ is identical to the solution of a deterministic dy-
namic optimization problem. Although this reduces the com-
putational complexity significantly, the computational cost to
determine the optimal policy still grows exponentially with the
size of the state space and the action space. We now exploit
the results in Lemma 3 to reduce the dimensions of the state
space and action space of the MDPΓ. We construct a reduced
MDP, namelyΓred, by restricting the action space to the possi-
ble allocations by the optimal policy and by aggregating allthe
queue lengths at which the optimal policy allocates zero dura-
tion to the current task into one stateNmax + 1. Thus, picking
the new action space as [0, f̄ †(c̄/w̄)], and the new state space as
{0, . . . ,Nmax+1}. The new transition probabilities for allocating
durationtℓ to taskℓ are defined by:

P
tℓ
nℓnℓ+1

=



























0, if nℓ+1 ∈ {0, . . . ,nℓ − 2},
e−λtℓ (λtℓ)(nℓ+1−nℓ+1)

(nℓ+1−nℓ+1)! , if nℓ+1 ∈ {nℓ − 1, . . . ,Nmax},
1−∑Nmax

j=0 P
tℓ
nℓ j , if nℓ+1 = Nmax+ 1.

The reward function ¯rℓ : N×R≥0 → R for allocation of duration
tℓ to taskℓ is defined by ¯rℓ(nℓ, tℓ) = w̄ f̄ (tℓ)− c̄nℓtℓ − c̄λt2

ℓ
/2. We

can now state the following equivalence.
Corollary 4 (Reducing the action space and the state space).
The Markov decision processesΓ andΓred yield the same opti-
mal policy.

Proof. It can be verified that the value function for the two
MDPs is the same. The reduction of the action space and the
state space follows from Lemma 3.

6. Dynamic queue with latency penalty: receding horizon
algorithm

As discussed in the previous section, the computation of theop-
timal policy for infinite horizon average cost MDP problem (9)
is expensive and grows exponentially with the dimension of the
state space and action space. We rely on the receding horizon
framework discussed in Section 2 to develop an approximation
algorithm to determine the solution of the MDPΓ in finite time.
As discussed in Algorithm 1, the receding horizon framework
solves a finite horizon optimization problem at each iteration.
We now study such finite horizon optimization problem for the
certainty-equivalent problem (9).

6.1. Finite horizon optimization

We now study the finite horizon optimization problem with
horizon lengthN that the receding horizon policy solves at each
iteration. It follows from Lemma 3 that the MDP formulation
is identical to the certainty-equivalent problem. Therefore, we
focus on the solution of the finite horizon certainty-equivalent

problem. Under Assumption 2, we treat̄f as a sigmoid func-
tion. For the ease of notation, we denotēf and c̄/w̄ by f and
c, respectively. We now introduce the following finite horizon
optimization problem that needs to be solved at each stage in
the receding horizon framework:

maximize
t�0

1
N

N
∑

ℓ=1

(

f (tℓ) − cE[nℓ |n1]tℓ −
cλt2

ℓ

2

)

subject to E[nℓ+1|n1] = max{0,E[nℓ |n1] − 1+ λtℓ},
(11)

wheret = {t1, . . . , tN} is the duration allocation vector.

Under Assumption 1, the constraint in the optimization prob-
lem (11) yields:

E[nℓ |n1] = n1 − ℓ + 1+ λ
ℓ−1
∑

j=1

t j .

Substituting the expected queue length into the objective func-
tion in the optimization problem (11), one obtains the function
J : RN

≥0→ R defined by

J(t) :=
1
N

N
∑

ℓ=1

(

f (tℓ) − c(n1 − ℓ + 1)tℓ − cλtℓ
N
∑

j=1, j,ℓ

t j −
cλt2

ℓ

2

)

,

wherec is the expected penalty rate,λ is the arrival rate, andn1

is the initial queue length. Thus, the optimization problem(11)
is equivalent to

maximize
t�0

J(t). (12)

In the remainder of Section 6.1, we propose a procedure to
determine the solution of the optimization problem (11). To
develop this procedure, we study some properties of the opti-
mal policy. Assume that the solution to the optimization prob-
lem (11) allocates a strictly positive time only to the tasksin
the setTproc ⊆ {1, . . . ,N}, which we call theset of processed
tasks. (Accordingly, the policy allocates zero time to the tasks
in {1, . . . ,N} \ Tproc). Without loss of generality, assume

Tproc := {η1, . . . , ηm},

whereη1 < · · · < ηm andm ≤ N. A duration allocation vector
t is said to be consistent withTproc if only the tasks inTproc are
allocated non-zero duration.
Lemma 5 (Properties of maximum points). For the optimiza-
tion problem(12), and a set of processed tasksTproc, the fol-
lowing statements hold:

(i). a global maximum pointt∗ satisfy t∗η1
≥ t∗η2

≥ . . . ≥ t∗ηm
;

(ii). a local maximum pointt† consistent withTproc satisfies

f ′(t†ηk
) = c(n1 − ηk + 1)+ cλ

m
∑

i=1

t†ηi
, for all k ∈ {1, . . . ,m};

(13)
(iii). the system of equations(13)can be reduced to

f ′(t†η1
) = P(t†η1

), and t†ηk
= f †( f ′(t†η1

) − c(ηk − η1)),

7



for each k∈ {2, . . . ,m}, whereP : R>0 → R∪{+∞} is
defined by

P(t) =















p(t), if f ′(t) ≥ c(ηm − η1),

+∞, otherwise,

where p(t) = c(n1−η1+1+λt+λ
∑m

k=2 f †( f ′(t)−c(ηk−η1)));
(iv). a local maximum pointt† consistent withTproc satisfies

f ′′(tηk) ≤ cλ, for all k ∈ {1, . . . ,m}.

Proof. We start by proving the first statement. Assumet∗η j
< t∗ηk

and define the allocation vectort̄ consistent withTproc by

t̄ηi =



























t∗ηi
, if i ∈ {1, . . . ,m} \ { j, k},

t∗η j
, if i = k,

t∗ηk
, if i = j.

It is easy to see that

J(t∗) − J( t̄) = (η j − ηk)(t
∗
η j
− t∗ηk

) < 0.

This inequality contradicts the assumption thatt∗ is a global
maximum ofJ.

To prove the second statement, note that a local maximum is
achieved at the boundary of the feasible region or at the set
where the Jacobian ofJ is zero. At the boundary of the feasible
regionRN

≥0, some of the allocations are zero. Given them non-
zero allocations, the Jacobian of the functionJ projected on the
space spanned by the non-zero allocations must be zero. The
expressions in the theorem are obtained by setting the Jacobian
to zero.

To prove the third statement, we subtract the expression in equa-
tion (13) fork = j from the expression fork = 1 to get

f ′(tη j ) = f ′(tη1) − c(η j − η1). (14)

There exists a solution of equation (14) if and only iff ′(tη1) ≥
c(η j − η1). If f ′(tη1) < c(η j − η1) + f ′(0), then there exists
only one solution. Otherwise, there exist two solutions. Itcan
be seen that if there exist two solutionst±j , with t−j < t+j , then
t−j < tη1 < t+j . From the first statement, it follows that only

possible allocation ist+j . Notice thatt+j = f †( f ′(tη1) − c(η j −
η1)). This choice yields feasible time allocation to each task
η j , j ∈ {2, . . . ,m} parametrized by the time allocation to the
taskη1. A typical allocation is shown in Figure 6(a). We further
note that the effective penalty rate for the taskη1 is c(n1 − η1 +

1) + cλ
∑m

j=1 tη j . Using the expression oftη j , j ∈ {2, . . . ,m},
parametrized bytη1, we obtain the expression forP.

To prove the last statement, we observe that the Hessian of the
functionJ is

∂2J

∂t2
= diag(f ′′(tη1), . . . , f ′′(tηm)) − cλ1m1T

m,

where diag(·) represents a diagonal matrix with the argument
as diagonal entries. For a local maximum to exist at non-zero
duration allocations{tη1, . . . , tηm}, the Hessian must be negative
semidefinite. A necessary condition for Hessian to be negative
semidefinite is that diagonal entries are non-positive.

We refer to the functionP as theeffective penalty ratefor the
first processed task. A typical graph ofP is shown in Fig-
ure 6(b). GivenTproc, a feasible allocation to the taskη1 is
such thatf ′(tη1) − c(η j − η1) > 0, for eachj ∈ {2, . . . ,m}. For a
givenTproc, we define the minimum feasible duration allocated
to taskη1 (see Figure 6(a)) by

τ1 :=















min{t ∈ R≥0 | f ′(t) = c(ηm − η1)}, if f ′(tinf) ≥ c(ηm − η1),

0, otherwise.

Let f ′′max be the maximum value off ′′. We now define the points
at which the functionf ′′−cλ changes its sign (see Figure 2(b)):

δ1 :=















min{t ∈ R≥0 | f ′′(t) = cλ}, if cλ ∈ [ f ′′(0), f ′′max],

0, otherwise,

δ2 :=















max{t ∈ R≥0 | f ′′(t) = cλ}, if cλ ≤ f ′′max,

0, otherwise.
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Figure 6: (a) Feasible allocations to the second processed task parametrized by
the allocation to the first processed task. (b) The penalty rate and the sigmoid
derivative as a function of the allocation to the first task.

Theorem 6(Finite horizon optimization). Given the optimiza-
tion problem(12), and a set of processed tasksTproc. The fol-
lowing statements are equivalent:

(i). there exists a local maximum point consistent withTproc;
(ii). one of the following conditions hold

f ′(δ2) ≥ P(δ2), or (15)

f ′(τ1) ≤ P(τ1), f ′(δ1) ≥ P(δ1), andδ1 ≥ τ1. (16)

Proof. A critical allocation to taskη1 is located at the inter-
section of the graph of the reward ratef ′(tη1) and the effec-
tive penalty rateP(tη1). From Lemma 5, a necessary condi-
tion for the existence of a local maximum at a critical point is
f ′′(tη1) ≤ cλ, which holds fortη1 ∈ ]0, δ1] ∪ [δ2,∞[. It can
be seen that if condition (15) holds, then the functionf ′(tη1)
and the effective penalty functionP(tη1) intersect in the region
[δ2,∞[. Similarly, condition (16) ensures the intersection of the
graph of the reward functionf ′(tη1) with the effective penalty
functionP(tη1) in the region ]0, δ1].

We now provide a procedure to determine the solution to the op-
timization problem (12). Given a sequence of zero and non-zero
allocationsξ ∈ {0,+}N, we denote the corresponding critical al-
location for maximum byt(ξ). The details of the procedure are
shown in Algorithm 2. We refer to the policy obtained from
receding horizon algorithm that solves the optimization prob-
lem (12) at each stage as thecertainty-equivalent policy.
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Algorithm 2 Finite horizon allocation algorithm
1: givenn1, N, c, λ
2: k := 0;A := φ;
3: for eachstringξ ∈ {0,+}N
4: setTproc := {i ∈ {1, . . . ,N} | ξi = +}
5: if condition (15) or (16)
6: then determine critical allocations for maximumt†η1

via bisection algorithm
7: determine allocations

t†η j
= f̄ †( f̄ ′(tη1) − c(η j − η1)), j ∈ {2, . . . ,m}

8: determine expected queue lengthE[nℓ], ℓ ∈ {1, . . . ,N}
9: if E[nℓ] > 0,∀ℓ ∈ {1, . . . ,N}

10: thenA = A∪{t†(ξ)}
11: optimal allocationt∗ = argmaxt∈AJ(t)

Remark 4 (Computational complexity of Algorithm 2). In the
worst case, Algorithm 2 requires a comparison of the solution
of 2N−1 optimization problems. Although the number of worst-
case comparisons grows exponentially with the chosen horizon
lengthN, it remains reasonable for fairly large horizon lengths
(N ≤ 10). �

Remark 5 (Comparison with a concave utility). With the
increasing penalty rate as well as the increasing arrival rate,
the time duration allocation decreases to a critical value and
then jumps down to zero, for the dynamic queue with latency
penalty. In contrast, if the performance function is concave in-
stead of sigmoid, then the duration allocation decreases contin-
uously to zero with increasing penalty rate as well as increasing
arrival rate. �

6.2. Performance of receding horizon algorithm

We now derive performance bounds on the certainty-equivalent
policy. First, we determine a global upper bound on the per-
formance of any policy for the MDPΓ. Then, we develop a
lower bound on the performance of the unit horizon certainty-
equivalent policy, that is, the policy obtained from the receding
horizon algorithm that solves optimization problem (11) with
horizon lengthN = 1 at each iteration. The performance of
the unit horizon certainty-equivalent policy provides a lower
bound to the performance of any certainty-equivalent policy
that solves a finite horizon problem with horizon lengthN > 1
at each stage. Lettrec be the sequence of duration allocations
under a certainty-equivalent policy. Without loss of generality,
we assume that the initial queue length is unity. If the initial
queue length is non-unity, then we drop tasks till queue length
is unity. Note that this does not affect the infinite horizon aver-
age value function. We also assume that the latency penalty is
small enough to ensure an optimal non-zero duration allocation
if only one task is present in the queue, that is, ¯c ≤ w̄ς f̄ . We
now derive a lower bound on the performance of the unit hori-
zon certainty-equivalent policy, which is also a lower bound on
the performance of any certainty-equivalent policy.
Theorem 7 (Bounds on performance). For the Markov Deci-
sion ProcessΓ, and any certainty-equivalent policy the follow-
ing statements hold, provided̄c ≤ w̄ς f̄ :

(i). the average value function satisfy the following upper
bound

Vavg(n1, t) ≤ w̄ f̄ ( f̄ †(c̄/w̄)) − c̄ f̄ †(c̄/w̄),

for each n1 ∈ N and any non-negative sequencet;
(ii). the average value function satisfy the following lower

bound for any certainty-equivalent policy:

Vavg(n1, trec) ≥














w̄ f̄ (τmax) − c̄τmax− c̄λτ2
max

2 , if 0 < λ ≤ 1
τmax

,

1
⌈λτmax⌉

(

w̄ f̄ (τmin) − ς f̄ τmax− c̄λτ2
max

2

)

, otherwise,

for each n1 ∈ N, whereτmax = f̄ †(c̄/w̄) andτmin = f̄ †(ς f̄ ).

Proof. We start by establishing the first statement. We recall
from Lemma 3 that the value functionVavg is identical to the
objective function of the certainty-equivalent problem (9), that
is,

Vavg(n1, t) = lim
N→+∞

1
N

N
∑

ℓ=1

w̄ f̄ (tℓ) − c̄E[nℓ |n1]tℓ − c̄λt2ℓ/2

≤ lim
N→+∞

1
N

N
∑

ℓ=1

w̄ f̄ (tℓ) − c̄tℓ

≤ w̄ f̄ ( f̄ †(c̄/w̄)) − c̄ f̄ †(c̄/w̄),

where the last inequality follows from Lemma 1.

In order to determine a lower bound, we construct following
allocation policy:

tlow
ℓ =















τmax, 0 < λ ≤ 1/τmax,

tstat
ℓ
, otherwise,

for eachℓ ∈ N, where tstat
ℓ
∈ argmax{w̄ f̄ (β) − c̄n̄ℓβ | β ∈

{0, f̄ †(n̄ℓc̄/w̄)}} and n̄ℓ = E[nℓ |n1]. We note that the unit
horizon certainty-equivalent policy allocates durationtunit

ℓ
∈

argmax{w̄ f̄ (t)−c̄n̄ℓt−c̄λt2/2 | t ∈ R≥0} to taskℓ ∈ N. Therefore,

w̄ f̄ (tunit
ℓ ) − c̄n̄ℓt

unit
ℓ − c̄λtunit

ℓ

2
/2 ≥ w̄ f̄ (tlow

ℓ ) − c̄n̄ℓt
low
ℓ − c̄λtlow

ℓ

2
/2

=⇒ Vavg(n1, tunit) ≥ Vavg(n1, t low).

We first consider the case when 0< λ ≤ 1/τmax. The con-
structed policy allocates durationτmax to each task. For the
certainty-equivalent problem, a new task arrives in time 1/λ ≥
τmax, that is, after servicing the current task, the queue is either
empty or has one task. Therefore, the expected reward for each
task isw̄ f̄ (τmax) − c̄τmax− c̄λτ2

max/2.

In the second case, we note that the maximum allocation to each
task under the constructed policy isτmax and hence, the maxi-
mum number of expected arrivals while processing current task
is λτmax. In the worst possible case,⌈λτmax⌉ − 1 tasks would be
dropped before next task is served. Further, the duration allo-
cation to the task is in the interval [τmin, τmax] and the penalty
c̄ ≤ w̄ς f̄ . Thus, the lower bound follows.
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We now elucidate on the concepts discussed in this section with
an example.
Example 3(Certainty-equivalent policy). Suppose that the hu-
man operator has to serve a queue of tasks with Poisson ar-
rival at the rateλ per sec. The set of the tasks is the same as
in Example 2 and each task is sampled uniformly from this
set. For this set of data, the average performance function
is f̄ (t) = w̄/(1 + e−at+b), wherew̄ = 6.4, a = 1.0853, and
b = 4.3027. The average penalty rate is ¯c = 0.1380 per sec-
ond. The certainty-equivalent policy that solves problem (11)
with horizon lengthN = 10 at each stage is shown in Figure 7.
It can be seen that the certainty-equivalent policy drops more
tasks at higher arrival rates and tries to maintain a single task in
the queue. The performance of the certainty-equivalent policy
along with the global upper bound on the performance of any
policy and the lower bound on the performance of any certainty-
equivalent policy is shown in Figure 8. As expected, for the
low arrival rates the certainty-equivalent policy achieves a per-
formance very close to the global upper bound. �
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(b) Moderate arrival rate
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Figure 7: Certainty-equivalent policy. An optimization problem with horizon
lengthN = 10 is solved at each stage. The arrival rates for the three scenarios
areλ = 0.25,0.5 and 1, respectively.
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Figure 8: Bounds on performance. The solid red curve represents the average
value function under certainty-equivalent policy, the dashed-dotted black line
represents the upper bound on any policy and the dashed greencurve represents
the lower bound on any certainty-equivalent policy.

Discussion 8(Optimal arrival rate). The performance of the
certainty-equivalent policy as a function of the arrival rate is
shown in Figure 9. It can be seen that the expected benefit per
unit task, that is, the value of the average value function un-
der the certainty-equivalent policy, decreases slowly till a crit-

ical arrival rate and then starts decreasing quickly. This criti-
cal arrival rate corresponds to the situation where a new task is
expected to arrive as soon as the operator finishes processing
the current task. For the set of data considered, the benefit per
unit time achieves its maximum at this critical arrival rate. In
general, it is not true and this maximum may be achieved at a
value higher than the critical arrival rate. Thus, the arrival rate
maximizing benefit per unit time may result in poor average de-
cision quality on each task. The objective of the designer isto
achieve a good performance on each task and therefore, the ar-
rival rate should be picked close to the critical arrival rate. It
can be verified that the critical arrival rate isλcrit = 1/ f̄ †(2c̄/w̄).
In general, there may be other performance goals for the opera-
tor, and accordingly, higher task arrival rate for the queuecould
be designed. �
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Figure 9: Expected benefit per unit task and per unit time over afinite hori-
zon under certainty-equivalent policy. The dashed-dottedblack, solid red and
dashed green curves correspond to latency penalties 0.01, 0.025, and 0.05, re-
spectively.

7. Dynamic queue with latency penalty: receding horizon
algorithm with real time information

We studied the receding horizon policies for the certainty-
equivalent problem which is identical to infinite horizon av-
erage cost formulation of the underlying MDP. While design-
ing the decision making queue, the true realization of the tasks
and the associated latency penalty and importance is not known.
Therefore, the policy is designed for the expected evolution of
the queue. In particular, the computation of the value func-
tion in equation (8) involved the expectation over realizations
of the queue. In real time, the information about the nature
of the current tasks in the queue is available and should be
incorporated in the value function. We incorporate this infor-
mation in the following way. We define new value function
Vrlzd

N : R∞≥0 × R∞≥0 × R∞≥0 × RN
≥0→ R by

Vrlzd
N (d,w,C, t) =

N
∑

ℓ=1

E[rℓ(dℓ, c,wdℓ , tℓ)|Fℓ],

whereR∞≥0 represents sequences of positive real numbers,Fℓ
represents the sigma algebra containing all the information
available when taskℓ is processed,d,w, and C are the se-
quences of realized difficulty levels, weights, and latency penal-
ties, respectively.

With the real time information, the infinite horizon average
value function of the MDPVrlzd

avg : R∞≥0 ×R∞≥0 ×R∞≥0 ×RL
≥0→ R

is defined by

Vrlzd
avg (d,w,C, t) = lim

N→+∞

1
N

Vrlzd
N (d,w,C, t).
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In the spirit of Section 6, we develop receding horizon algo-
rithms to maximizeVrlzd

avg . We solve the associated finite horizon
problem using dynamic programming with discretized action
and state space.
Remark 6 (Finite horizon problem). It can be verified that
the finite horizon problem associated with the maximization
of Vrlzd

avg is similar to the optimization problem (11), but due
to the non-identical nature of the tasks, the allocations tothe
processed tasks can not be parametrized as a function of the al-
location to the first processed task (see Lemma 5). Thus, the
search for the optimal allocation can not be reduced to a one di-
mensional search. This makes the extension of the techniques
in Section 6 to the maximization ofVrlzd

avg intractable. Therefore,
we utilize dynamic programming with discretized action and
state space to approximately solve the finite horizon problem.�

Before we present the receding horizon algorithm, we introduce
few notations. An analogous argument to the one in Lemma 3
shows that under optimal policy the maximum allocation to a
sigmoid functionf with latency penaltyc and weightw is upper
bounded byf †(c/w). We define the maximum allocation to any
sigmoid function byδmax = sup{ f †d (cmin

d /wmax
d ) | d ∈ D}. Given

horizon lengthN, current queue lengthnℓ ≤ N, the realiza-
tion of the sigmoid functionsf1, . . . , fnℓ , the associated latency
penaltiesc1, . . . , cnℓ and importancew1, . . . ,wnℓ , we define the
reward associated with taskj ∈ {1, . . . ,N} by

r j =















r rlzd
j , if 1 ≤ j ≤ nℓ,

rexp
j , if nℓ + 1 ≤ j ≤ N,

(17)

wherer rlzd
j = w j f j(t j) − (

∑nℓ
i= j ci + (E[n j ] − nℓ − j + 1)c̄)t j −

c̄λt2j /2, andrexp
j = w̄ f̄ (t j) − c̄(nℓ − j + 1)t j − c̄λt2j /2. We now

formally introduce this dynamic programming based algorithm
in Algorithm 3, and refer to it asadaptive allocation algorithm.
This algorithm incorporates the precise information of thetasks
currently waiting in the queue while processing each task and
thus adapts the allocation policy as new information becomes
available. We will now provide numerical evidence to show
that adaptive allocation policy improves the performance over
the policies discussed in Section 6.

Algorithm 3 Adaptive Allocation Algorithm
1: Given: fd,d ∈ D, horizon lengthN, arrival rateλ, setℓ = 1
2: For taskℓ determine queue lengthnℓ, sigmoid functions

and penalty ratesfi , ci for each taski ∈ {1, . . . ,nℓ}
3: if nℓ < N
4: set stage rewardsr j using equation (17),∀ j ∈ {1, . . . ,N},
5: elseset stage rewards, for eachj ∈ {1, . . . ,N},

r j = w j f j(t j)− (
∑N

i= j ci + (E[n j ] −nℓ − j +1)c̄)t j − c̄λt2j /2.
6: solve the finite horizon DP with appropriately discretized

allocationst j ∈ [0, δmax], for each j ∈ {1, . . . ,N}
7: allocate durationt1 to the taskℓ
8: setℓ = ℓ + 1 and go to step2:

Example 4 (Adaptive allocation policy). For the data in Ex-
ample 3, we now study the adaptive allocation policy. Adaptive
allocation policies with horizon length 1 and 10 for a sample

evolution of the queue at an arrival rateλ = 0.5 per second are
shown in Figure 10 and 11, respectively. The adaptive policy
tends to drop the tasks that are difficult and unimportant. The
difficulty of the tasks is characterized by the inflection point
of the associated sigmoid functions. Due to the heterogeneous
nature of the tasks, the queue length under the adaptive pol-
icy is larger than the queue length under certainty-equivalent
policy. The queue length under the adaptive allocation pol-
icy with horizon length 1 is higher than the adaptive allocation
policy with horizon length 10. A comparison of the certainty-
equivalent policy and the adaptive allocation policies is shown
in Figure 12. We obtained these performance curves through
Monte-Carlo simulations. It can be seen that the adaptive allo-
cation policy improves the performance significantly over the
certainty-equivalent policy. Interestingly, the performance of
the adaptive allocation policy with horizon lengthN = 1 is also
better than the certainty-equivalent policy. Thus, incorporat-
ing the available information significantly improves the perfor-
mance. �
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Figure 10: Adaptive policy for asample evolutionof the dynamic queue with
latency penalty. An optimization problem with horizon length N = 10 is solved
at each stage.
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Figure 11: Adaptive policy for asample evolutionof the dynamic queue with
latency penalty. An optimization problem with horizon length N = 1 is solved
at each stage.
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Figure 12: Empirical expected benefit per unit task and per unit time. The
dashed-dotted black curve represents the adaptive allocation policy with hori-
zon length 10, the solid red curve represents the adaptive allocation policy with
horizon length 1, and the dashed green curve represents the certainty-equivalent
policy with horizon length 10, respectively.
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8. Conclusions

We presented optimal servicing policies for the queues where
the performance function of the server is a sigmoid function.
First, we considered a queue with no arrival and a latency
penalty. It was observed that the optimal policy may drop some
tasks. Further, for identical tasks, the duration allocation to
the task increases with the decreasing queue length. Second,
a dynamic queue with latency penalty was considered. We first
studied the scenario where no real time information about the
evolution of the queue was available. This models the situation
of the designer who has no information about the true realiza-
tion of queue at her disposal. A receding horizon algorithm was
established for the certainty-equivalent problem and guidelines
for choosing the arrival rate were suggested. We then studied
the scenario where real time information about the realization
of the queue was available. An adaptive allocation algorithm
that incorporated all the available information about the current
tasks into the allocation policy was developed. A comparison
of the certainty-equivalent policy and the adaptive allocation
policy was presented.

The decision support system designed in this paper assumes
that the arrival rate of the tasks as well as the parameters inthe
performance function are known. An interesting open problem
is to come up with policies which perform an online estimation
of the arrival rate and the parameters of the performance func-
tion and simultaneously determine the optimal allocation pol-
icy. Another interesting problem is to incorporate more human
factors into the optimal policy, for example, situational aware-
ness, fatigue, etc. The policies designed in this paper relyon
first-come first-serve discipline to process tasks. It wouldbe of
interest to study problems with other processing disciples, for
example, preemptive queues.
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